Leetcode - Edit Distance

https://leetcode.com/problems/edit-distance/

Given two words word1 and word2, find the minimum number of operations required to convert word1 to word2.

You have the following 3 operations permitted on a word:

  1. Insert a character
  2. Delete a character
  3. Replace a character

Example 1:

Input: word1 = "horse", word2 = "ros"
Output: 3
Explanation: 
horse -> rorse (replace 'h' with 'r')
rorse -> rose (remove 'r')
rose -> ros (remove 'e')

 

Leetcode - Longest Common Subsequence

https://leetcode.com/problems/longest-common-subsequence/

Given two strings text1 and text2, return the length of their longest common subsequence.

A subsequence of a string is a new string generated from the original string with some characters(can be none) deleted without changing the relative order of the remaining characters. (eg, "ace" is a subsequence of "abcde" while "aec" is not). A common subsequence of two strings is a subsequence that is common to both strings.

If there is no common subsequence, return 0.

Example 1:

Input: text1 = "abcde", text2 = "ace" 
Output: 3  
Explanation: The longest common subsequence is "ace" and its length is 3.

 

Leetcode - Longest Increasing Subsequence

https://leetcode.com/problems/longest-increasing-subsequence/

Given an unsorted array of integers, find the length of longest increasing subsequence.

Example:

Input: [10,9,2,5,3,7,101,18]
Output: 4 
Explanation: The longest increasing subsequence is [2,3,7,101], therefore the length is 4. 

 

Leetcode - lowest-common-ancestor-of-a-binary-tree

https://leetcode.com/problems/lowest-common-ancestor-of-a-binary-tree/

Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree.

According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes p and q as the lowest node in T that has both p and q as descendants (where we allow a node to be a descendant of itself).”

Given the following binary tree:  root = [3,5,1,6,2,0,8,null,null,7,4]


 

Leetcode - unique-binary-search-trees

https://leetcode.com/problems/unique-binary-search-trees/

Given n, how many structurally unique BST's (binary search trees) that store values 1 ... n?

Example:

Input: 3
Output: 5
Explanation:
Given n = 3, there are a total of 5 unique BST's:

   1         3     3      2      1
    \       /     /      / \      \
     3     2     1      1   3      2
    /     /       \                 \
   2     1         2                 3

 

Leetcode - ugly-number-ii

https://leetcode.com/problems/ugly-number-ii/

Write a program to find the n-th ugly number.

Ugly numbers are positive numbers whose prime factors only include 2, 3, 5

Example:

Input: n = 10
Output: 12
Explanation: 1, 2, 3, 4, 5, 6, 8, 9, 10, 12 is the sequence of the first 10 ugly numbers.

 

Leetcode - Permutations && Permutations-ii

https://leetcode.com/problems/permutations/

Given a collection of distinct integers, return all possible permutations.

Example:

Input: [1,2,3]
Output:
[
  [1,2,3],
  [1,3,2],
  [2,1,3],
  [2,3,1],
  [3,1,2],
  [3,2,1]
]

https://leetcode.com/problems/permutations-ii/

Given a collection of numbers that might contain duplicates, return all possible unique permutations.

Example:

Input: [1,1,2]
Output:
[
  [1,1,2],
  [1,2,1],
  [2,1,1]
]

 

Leetcode - maximize-distance-to-closest-person

https://leetcode.com/problems/maximize-distance-to-closest-person/

In a row of seats, 1 represents a person sitting in that seat, and 0 represents that the seat is empty. 

There is at least one empty seat, and at least one person sitting.

Alex wants to sit in the seat such that the distance between him and the closest person to him is maximized. 

Return that maximum distance to closest person.

Example 1:

Input: [1,0,0,0,1,0,1]
Output: 2
Explanation: 
If Alex sits in the second open seat (seats[2]), then the closest person has distance 2.
If Alex sits in any other open seat, the closest person has distance 1.
Thus, the maximum distance to the closest person is 2.

 

Leetcode - letter-case-permutation

https://leetcode.com/problems/letter-case-permutation/

Given a string S, we can transform every letter individually to be lowercase or uppercase to create another string.  Return a list of all possible strings we could create.

Examples:
Input: S = "a1b2"
Output: ["a1b2", "a1B2", "A1b2", "A1B2"]

Input: S = "3z4"
Output: ["3z4", "3Z4"]

Input: S = "12345"
Output: ["12345"]

 

Leetcode - subsets && subsets-ii

https://leetcode.com/problems/subsets/

https://leetcode.com/problems/subsets-ii/

Given a set of distinct integers, nums, return all possible subsets (the power set).

Note: The solution set must not contain duplicate subsets.

Example:

Input: nums = [1,2,3]
Output:
[
  [3],
  [1],
  [2],
  [1,2,3],
  [1,3],
  [2,3],
  [1,2],
  []
]

subset-ii is containing duplicate numbers in nums