Leetcode - Delete Leaves With a Given Value

https://leetcode.com/problems/delete-leaves-with-a-given-value/

Given a binary tree root and an integer target, delete all the leaf nodes with value target.

Note that once you delete a leaf node with value targetif it's parent node becomes a leaf node and has the value target, it should also be deleted (you need to continue doing that until you can't).

 

Example 1:

Input: root = [1,2,3,2,null,2,4], target = 2
Output: [1,null,3,null,4]

 

Leetcode - Maximum Binary Tree

https://leetcode.com/problems/maximum-binary-tree/

Given an integer array with no duplicates. A maximum tree building on this array is defined as follow:

  1. The root is the maximum number in the array.
  2. The left subtree is the maximum tree constructed from left part subarray divided by the maximum number.
  3. The right subtree is the maximum tree constructed from right part subarray divided by the maximum number.

Construct the maximum tree by the given array and output the root node of this tree.

Example 1:

Input: [3,2,1,6,0,5]
Output: return the tree root node representing the following tree:

      6
    /   \
   3     5
    \    / 
     2  0   
       \
        1

 

Leetcode - Populating Next Right Pointers in Each Node II

https://leetcode.com/problems/populating-next-right-pointers-in-each-node-ii/

Given a binary tree

struct Node {
  int val;
  Node *left;
  Node *right;
  Node *next;
}

Populate each next pointer to point to its next right node. If there is no next right node, the next pointer should be set to NULL.

Initially, all next pointers are set to NULL.

 

Follow up:

  • You may only use constant extra space.
  • Recursive approach is fine, you may assume implicit stack space does not count as extra space for this problem.

 

Example 1:

Input: root = [1,2,3,4,5,null,7]
Output: [1,#,2,3,#,4,5,7,#]
Explanation: Given the above binary tree (Figure A), your function should populate each next pointer to point to its next right node, just like in Figure B. The serialized output is in level order as connected by the next pointers, with '#' signifying the end of each level.

 

Leetcode - Populating Next Right Pointers in Each Node

You are given a perfect binary tree where all leaves are on the same level, and every parent has two children. The binary tree has the following definition:

struct Node {
  int val;
  Node *left;
  Node *right;
  Node *next;
}

Populate each next pointer to point to its next right node. If there is no next right node, the next pointer should be set to NULL.

Initially, all next pointers are set to NULL.

 

Follow up:

  • You may only use constant extra space.
  • Recursive approach is fine, you may assume implicit stack space does not count as extra space for this problem.

 

Example 1:

 

Leetcode - Binary Tree Right Side View

https://leetcode.com/problems/binary-tree-right-side-view/

Given a binary tree, imagine yourself standing on the right side of it, return the values of the nodes you can see ordered from top to bottom.

Example:

Input: [1,2,3,null,5,null,4]
Output: [1, 3, 4]
Explanation:

   1            <---
 /   \
2     3         <---
 \     \
  5     4       <---

 

Leetcode - Boundary of Binary Tree

https://leetcode.com/problems/boundary-of-binary-tree/

Given a binary tree, return the values of its boundary in anti-clockwise direction starting from root. Boundary includes left boundary, leaves, and right boundary in order without duplicate nodes.  (The values of the nodes may still be duplicates.)

Left boundary is defined as the path from root to the left-most node. Right boundary is defined as the path from root to the right-most node. If the root doesn't have left subtree or right subtree, then the root itself is left boundary or right boundary. Note this definition only applies to the input binary tree, and not applies to any subtrees.

The left-most node is defined as a leaf node you could reach when you always firstly travel to the left subtree if exists. If not, travel to the right subtree. Repeat until you reach a leaf node.

The right-most node is also defined by the same way with left and right exchanged.

Example 1

Input:
  1
   \
    2
   / \
  3   4

Ouput:
[1, 3, 4, 2]

Explanation:
The root doesn't have left subtree, so the root itself is left boundary.
The leaves are node 3 and 4.
The right boundary are node 1,2,4. Note the anti-clockwise direction means you should output reversed right boundary.
So order them in anti-clockwise without duplicates and we have [1,3,4,2].

 

Leetcode - Bitwise AND of Numbers Range

https://leetcode.com/problems/bitwise-and-of-numbers-range/

Given a range [m, n] where 0 <= m <= n <= 2147483647, return the bitwise AND of all numbers in this range, inclusive.

Example 1:

Input: [5,7]
Output: 4

Example 2:

Input: [0,1]
Output: 0

 

Leetcode - Binary Tree Longest Consecutive Sequence

https://leetcode.com/problems/binary-tree-longest-consecutive-sequence/

Given a binary tree, find the length of the longest consecutive sequence path.

The path refers to any sequence of nodes from some starting node to any node in the tree along the parent-child connections. The longest consecutive path need to be from parent to child (cannot be the reverse).

Example 1:

Input:

   1
    \
     3
    / \
   2   4
        \
         5

Output: 3

 

Leetcode - Maximum Average Subtree

https://leetcode.com/problems/maximum-average-subtree/

Given the root of a binary tree, find the maximum average value of any subtree of that tree.

(A subtree of a tree is any node of that tree plus all its descendants. The average value of a tree is the sum of its values, divided by the number of nodes.)

 

Example 1:

Input: [5,6,1]
Output: 6.00000

 

Leetcode - Construct Binary Tree from Inorder and Postorder Traversal

https://leetcode.com/problems/construct-binary-tree-from-inorder-and-postorder-traversal/

Given inorder and postorder traversal of a tree, construct the binary tree.

Note:
You may assume that duplicates do not exist in the tree.

For example, given

inorder = [9,3,15,20,7]
postorder = [9,15,7,20,3]

Return the following binary tree:

    3
   / \
  9  20
    /  \
   15   7