Leetcode - Compare Version Numbers

https://leetcode.com/problems/compare-version-numbers/

Compare two version numbers version1 and version2.
If version1 > version2 return 1; if version1 < version2 return -1;otherwise return 0.

You may assume that the version strings are non-empty and contain only digits and the . character.

The . character does not represent a decimal point and is used to separate number sequences.

For instance, 2.5 is not "two and a half" or "half way to version three", it is the fifth second-level revision of the second first-level revision.

You may assume the default revision number for each level of a version number to be 0. For example, version number 3.4 has a revision number of 3 and 4 for its first and second level revision number. Its third and fourth level revision number are both 0.

Example 1:

Input: version1 = "0.1", version2 = "1.1"
Output: -1

 

Leetcode - Integer to Roman

 

Roman numerals are represented by seven different symbols: I, V, X, L, C, D and M.

Symbol       Value
I             1
V             5
X             10
L             50
C             100
D             500
M             1000

For example, two is written as II in Roman numeral, just two one's added together. Twelve is written as, XII, which is simply X + II. The number twenty seven is written as XXVII, which is XX + V + II.

Roman numerals are usually written largest to smallest from left to right. However, the numeral for four is not IIII. Instead, the number four is written as IV. Because the one is before the five we subtract it making four. The same principle applies to the number nine, which is written as IX. There are six instances where subtraction is used:

  • I can be placed before V (5) and X (10) to make 4 and 9. 
  • X can be placed before L (50) and C (100) to make 40 and 90. 
  • C can be placed before D (500) and M (1000) to make 400 and 900.

Given an integer, convert it to a roman numeral. Input is guaranteed to be within the range from 1 to 3999.

Example 1:

Input: 3
Output: "III"

 

Leetcode - Count Servers that Communicate

https://leetcode.com/problems/count-servers-that-communicate/

You are given a map of a server center, represented as a m * n integer matrix grid, where 1 means that on that cell there is a server and 0 means that it is no server. Two servers are said to communicate if they are on the same row or on the same column.

Return the number of servers that communicate with any other server.

 

Example 1:

Input: grid = [[1,0],[0,1]]
Output: 0
Explanation: No servers can communicate with others.

Example 2:

Input: grid = [[1,0],[1,1]]
Output: 3
Explanation: All three servers can communicate with at least one other server.

 

Leetcode - Replace Elements with Greatest Element on Right Side

https://leetcode.com/problems/replace-elements-with-greatest-element-on-right-side/

Given an array arr, replace every element in that array with the greatest element among the elements to its right, and replace the last element with -1.

After doing so, return the array.

 

Example 1:

Input: arr = [17,18,5,4,6,1]
Output: [18,6,6,6,1,-1]

 

leetcode - Number Of Corner Rectangles

https://leetcode.com/problems/number-of-corner-rectangles/

Given a grid where each entry is only 0 or 1, find the number of corner rectangles.

A corner rectangle is 4 distinct 1s on the grid that form an axis-aligned rectangle. Note that only the corners need to have the value 1. Also, all four 1s used must be distinct.

 

Example 1:

Input: grid = 
[[1, 0, 0, 1, 0],
 [0, 0, 1, 0, 1],
 [0, 0, 0, 1, 0],
 [1, 0, 1, 0, 1]]
Output: 1
Explanation: There is only one corner rectangle, with corners grid[1][2], grid[1][4], grid[3][2], grid[3][4].

 

Leetcode - Maximum Product Subarray

https://leetcode.com/problems/maximum-product-subarray/

Given an integer array nums, find the contiguous subarray within an array (containing at least one number) which has the largest product.

Example 1:

Input: [2,3,-2,4]
Output: 6
Explanation: [2,3] has the largest product 6.

Example 2:

Input: [-2,0,-1]
Output: 0
Explanation: The result cannot be 2, because [-2,-1] is not a subarray.

 

Leetcode - Next Permutation

https://leetcode.com/problems/next-permutation/

Implement next permutation, which rearranges numbers into the lexicographically next greater permutation of numbers.

If such arrangement is not possible, it must rearrange it as the lowest possible order (ie, sorted in ascending order).

The replacement must be in-place and use only constant extra memory.

Here are some examples. Inputs are in the left-hand column and its corresponding outputs are in the right-hand column.

1,2,31,3,2
3,2,11,2,3
1,1,51,5,1

 

Leetcode - Longest Substring with At Most Two Distinct Characters

https://leetcode.com/problems/longest-substring-with-at-most-two-distinct-characters/

Given a string s , find the length of the longest substring t  that contains at most 2 distinct characters.

Example 1:

Input: "eceba"
Output: 3
Explanation: t is "ece" which its length is 3.

Example 2:

Input: "ccaabbb"
Output: 5
Explanation: t is "aabbb" which its length is 5.

 

Leetcode - Sliding Window Maximum

https://leetcode.com/problems/sliding-window-maximum/

Given an array nums, there is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k numbers in the window. Each time the sliding window moves right by one position. Return the max sliding window.

Follow up:
Could you solve it in linear time?

Example:

Input: nums = [1,3,-1,-3,5,3,6,7], and k = 3
Output: [3,3,5,5,6,7] 
Explanation: 

Window position                Max
---------------               -----
[1  3  -1] -3  5  3  6  7       3
 1 [3  -1  -3] 5  3  6  7       3
 1  3 [-1  -3  5] 3  6  7       5
 1  3  -1 [-3  5  3] 6  7       5
 1  3  -1  -3 [5  3  6] 7       6
 1  3  -1  -3  5 [3  6  7]      7

 

Leetcode - Design Hit Counter

https://leetcode.com/problems/design-hit-counter/

Design a hit counter which counts the number of hits received in the past 5 minutes.

Each function accepts a timestamp parameter (in seconds granularity) and you may assume that calls are being made to the system in chronological order (ie, the timestamp is monotonically increasing). You may assume that the earliest timestamp starts at 1.

It is possible that several hits arrive roughly at the same time.

Example:

HitCounter counter = new HitCounter();

// hit at timestamp 1.
counter.hit(1);

// hit at timestamp 2.
counter.hit(2);

// hit at timestamp 3.
counter.hit(3);

// get hits at timestamp 4, should return 3.
counter.getHits(4);

// hit at timestamp 300.
counter.hit(300);

// get hits at timestamp 300, should return 4.
counter.getHits(300);

// get hits at timestamp 301, should return 3.
counter.getHits(301);