Leetcode - Word Break

https://leetcode.com/problems/word-break/

Given a non-empty string s and a dictionary wordDict containing a list of non-empty words, determine if s can be segmented into a space-separated sequence of one or more dictionary words.

Note:

  • The same word in the dictionary may be reused multiple times in the segmentation.
  • You may assume the dictionary does not contain duplicate words.

Example 1:

Input: s = "leetcode", wordDict = ["leet", "code"]
Output: true
Explanation: Return true because "leetcode" can be segmented as "leet code".

Example 2:

Input: s = "applepenapple", wordDict = ["apple", "pen"]
Output: true
Explanation: Return true because "applepenapple" can be segmented as "apple pen apple".
             Note that you are allowed to reuse a dictionary word.

 

Leetcode - Maximum Depth of N-ary Tree

https://leetcode.com/problems/maximum-depth-of-n-ary-tree/

Given a n-ary tree, find its maximum depth.

The maximum depth is the number of nodes along the longest path from the root node down to the farthest leaf node.

Nary-Tree input serialization is represented in their level order traversal, each group of children is separated by the null value (See examples).

 

Example 1:

Input: root = [1,null,3,2,4,null,5,6]
Output: 3

 

Leetcode - Check If a String Is a Valid Sequence from Root to Leaves Path in a Binary Tree

Given a binary tree where each path going from the root to any leaf form a valid sequence, check if a given string is a valid sequence in such binary tree. 

We get the given string from the concatenation of an array of integers arr and the concatenation of all values of the nodes along a path results in a sequence in the given binary tree.

 

Example 1:

Input: root = [0,1,0,0,1,0,null,null,1,0,0], arr = [0,1,0,1]
Output: true
Explanation: 
The path 0 -> 1 -> 0 -> 1 is a valid sequence (green color in the figure). 
Other valid sequences are: 
0 -> 1 -> 1 -> 0 
0 -> 0 -> 0

 

Leetcode - Add One Row to Tree

https://leetcode.com/problems/add-one-row-to-tree/

Given the root of a binary tree, then value v and depth d, you need to add a row of nodes with value v at the given depth d. The root node is at depth 1.

The adding rule is: given a positive integer depth d, for each NOT null tree nodes N in depth d-1, create two tree nodes with value v as N's left subtree root and right subtree root. And N's original left subtree should be the left subtree of the new left subtree root, its original right subtree should be the right subtree of the new right subtree root. If depth d is 1 that means there is no depth d-1 at all, then create a tree node with value v as the new root of the whole original tree, and the original tree is the new root's left subtree.

Example 1:

Input: 
A binary tree as following:
       4
     /   \
    2     6
   / \   / 
  3   1 5   

v = 1

d = 2

Output: 
       4
      / \
     1   1
    /     \
   2       6
  / \     / 
 3   1   5   

 

Leetcode - Longest Univalue Path

https://leetcode.com/problems/longest-univalue-path/

Given a binary tree, find the length of the longest path where each node in the path has the same value. This path may or may not pass through the root.

The length of path between two nodes is represented by the number of edges between them.

 

Example 1:

Input:

              5
             / \
            4   5
           / \   \
          1   1   5

 

Leetcode - Binary Tree Maximum Path Sum

https://leetcode.com/problems/binary-tree-maximum-path-sum/

Given a non-empty binary tree, find the maximum path sum.

For this problem, a path is defined as any sequence of nodes from some starting node to any node in the tree along the parent-child connections. The path must contain at least one node and does not need to go through the root.

Example 1:

Input: [1,2,3]

       1
      / \
     2   3

Output: 6

Example 2:

Input: [-10,9,20,null,null,15,7]

   -10
   / \
  9  20
    /  \
   15   7

Output: 42

 

Leetcode - Word Pattern

https://leetcode.com/problems/word-pattern/

Given a pattern and a string str, find if str follows the same pattern.

Here follow means a full match, such that there is a bijection between a letter in pattern and a non-empty word in str.

Example 1:

Input: pattern = "abba", str = "dog cat cat dog"
Output: true

Example 2:

Input:pattern = "abba", str = "dog cat cat fish"
Output: false

 

Leetcode - Isomorphic Strings

https://leetcode.com/problems/isomorphic-strings/

Given two strings s and t, determine if they are isomorphic.

Two strings are isomorphic if the characters in s can be replaced to get t.

All occurrences of a character must be replaced with another character while preserving the order of characters. No two characters may map to the same character but a character may map to itself.

Example 1:

Input: s = "egg", t = "add"
Output: true

 

Leetcode - Find and Replace Pattern

https://leetcode.com/problems/find-and-replace-pattern/

You have a list of words and a pattern, and you want to know which words in words matches the pattern.

A word matches the pattern if there exists a permutation of letters p so that after replacing every letter x in the pattern with p(x), we get the desired word.

(Recall that a permutation of letters is a bijection from letters to letters: every letter maps to another letter, and no two letters map to the same letter.)

Return a list of the words in words that match the given pattern. 

You may return the answer in any order.

 

Example 1:

Input: words = ["abc","deq","mee","aqq","dkd","ccc"], pattern = "abb"
Output: ["mee","aqq"]
Explanation: "mee" matches the pattern because there is a permutation {a -> m, b -> e, ...}. 
"ccc" does not match the pattern because {a -> c, b -> c, ...} is not a permutation,
since a and b map to the same letter.

 

Leetcode - Count Substrings with Only One Distinct Letter

https://leetcode.com/problems/count-substrings-with-only-one-distinct-letter/

Given a string S, return the number of substrings that have only one distinct letter.

 

Example 1:

Input: S = "aaaba"
Output: 8
Explanation: The substrings with one distinct letter are "aaa", "aa", "a", "b".
"aaa" occurs 1 time.
"aa" occurs 2 times.
"a" occurs 4 times.
"b" occurs 1 time.
So the answer is 1 + 2 + 4 + 1 = 8.